Multi-objective reinforcement learning (MORL) is a relatively new field which builds on conventional Reinforcement Learning (RL) to solve multi-objective problems. One of common algorithm is to extend scalar value Q-learning by using vector Q values in combination with a utility function, which captures the user's preference for action selection. This study follows on prior works, and focuses on what factors influence the frequency with which value-based MORL Q-learning algorithms learn the optimal policy for an environment with stochastic state transitions in scenarios where the goal is to maximise the Scalarised Expected Return (SER) - that is, to maximise the average outcome over multiple runs rather than the outcome within each individual episode. The analysis of the interaction between stochastic environment and MORL Q-learning algorithms run on a simple Multi-objective Markov decision process (MOMDP) Space Traders problem with different variant versions. The empirical evaluations show that well designed reward signal can improve the performance of the original baseline algorithm, however it is still not enough to address more general environment. A variant of MORL Q-Learning incorporating global statistics is shown to outperform the baseline method in original Space Traders problem, but remains below 100 percent effectiveness in finding the find desired SER-optimal policy at the end of training. On the other hand, Option learning is guarantied to converge to desired SER-optimal policy but it is not able to scale up to solve more complex problem in real-life. The main contribution of this thesis is to identify the extent to which the issue of noisy Q-value estimates impacts on the ability to learn optimal policies under the combination of stochastic environments, non-linear utility and a constant learning rate.


翻译:多目标加固学习( MORL) 是一个相对较新的领域, 以常规加固学习( RL) 为基础, 解决多目标问题。 一个常见的算法是, 通过使用矢量 Q 值, 结合一个功能功能, 来推广 标量 Q 值 学习 Q 学习 学习 多目标 学习 (MORL) 是一个相对较新的领域, 以常规加固学习 (RL) 解决多目标 。 一个常见的算法是: 通过使用矢量 Q 值, 结合一个工具函数, 来扩展 标量 Q 学习 Q 学习 。 这项研究以先前的多目标 Markov (MOMDP) Space Trade Translation 算法为基础, 重点是什么因素? 设计良好的奖赏信号可以改善原基线算法的性能, 但是还不足以解决更普遍的环境问题 。 MOLQ 将全球平均效果 变法, 在Slimal-LQ 中, 在原始的 学习方法下, 继续 学习 。 在SIMER 问题 中, 在原始的原始 排序 学习方法下, 学习 学习,, 正在 学习 学习 继续 学习 学习 学习 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员