Recent neural network-based wave functions have achieved state-of-the-art accuracies in modeling ab-initio ground-state potential energy surface. However, these networks can only solve different spatial arrangements of the same set of atoms. To overcome this limitation, we present Graph-learned Orbital Embeddings (Globe), a neural network-based reparametrization method that can adapt neural wave functions to different molecules. We achieve this by combining a localization method for molecular orbitals with spatial message-passing networks. Further, we propose a locality-driven wave function, the Molecular Oribtal Network (Moon), tailored to solving Schr\"odinger equations of different molecules jointly. In our experiments, we find Moon requiring 8 times fewer steps to converge to similar accuracies as previous methods when trained on different molecules jointly while Globe enabling the transfer from smaller to larger molecules. Further, our analysis shows that Moon converges similarly to recent transformer-based wave functions on larger molecules. In both the computational chemistry and machine learning literature, we are the first to demonstrate that a single wave function can solve the Schr\"odinger equation of molecules with different atoms jointly.
翻译:最近以神经网络为基础的神经网络波函数在模拟 ab-initio 地表潜在能量表面中达到了最新水平的高度。 然而, 这些网络只能解决同一原子组的不同空间安排。 为了克服这一限制, 我们提出一个基于神经网络的神经网络重新校正方法, 使神经网络功能适应不同的分子。 我们通过将分子轨道功能与空间信息传递网络结合起来, 实现了这一点。 此外, 我们提议了一个由位置驱动的波函数, 分子奥里巴塔尔网络( 月球), 专门用来解决不同分子的Schr\ odinger方程式。 在我们的实验中, 我们发现月亮需要8倍的步子来融合到相似的圆形, 作为以前在联合训练不同分子时使用的方法, 而环球使得从小分子向大分子的转移。 此外, 我们的分析显示月球与最近基于变异的波函数相近似于较大的分子。 在计算化学和机器学习分子的分子中, 我们先用不同的分子模型来演示单波等式的公式。