Recent neural network-based wave functions have achieved state-of-the-art accuracies in modeling ab-initio ground-state potential energy surface. However, these networks can only solve different spatial arrangements of the same set of atoms. To overcome this limitation, we present Graph-learned Orbital Embeddings (Globe), a neural network-based reparametrization method that can adapt neural wave functions to different molecules. We achieve this by combining a localization method for molecular orbitals with spatial message-passing networks. Further, we propose a locality-driven wave function, the Molecular Oribtal Network (Moon), tailored to solving Schr\"odinger equations of different molecules jointly. In our experiments, we find Moon requiring 8 times fewer steps to converge to similar accuracies as previous methods when trained on different molecules jointly while Globe enabling the transfer from smaller to larger molecules. Further, our analysis shows that Moon converges similarly to recent transformer-based wave functions on larger molecules. In both the computational chemistry and machine learning literature, we are the first to demonstrate that a single wave function can solve the Schr\"odinger equation of molecules with different atoms jointly.


翻译:最近以神经网络为基础的神经网络波函数在模拟 ab-initio 地表潜在能量表面中达到了最新水平的高度。 然而, 这些网络只能解决同一原子组的不同空间安排。 为了克服这一限制, 我们提出一个基于神经网络的神经网络重新校正方法, 使神经网络功能适应不同的分子。 我们通过将分子轨道功能与空间信息传递网络结合起来, 实现了这一点。 此外, 我们提议了一个由位置驱动的波函数, 分子奥里巴塔尔网络( 月球), 专门用来解决不同分子的Schr\ odinger方程式。 在我们的实验中, 我们发现月亮需要8倍的步子来融合到相似的圆形, 作为以前在联合训练不同分子时使用的方法, 而环球使得从小分子向大分子的转移。 此外, 我们的分析显示月球与最近基于变异的波函数相近似于较大的分子。 在计算化学和机器学习分子的分子中, 我们先用不同的分子模型来演示单波等式的公式。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
19+阅读 · 2021年2月4日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员