We show that feasibility of the $t^\text{th}$ level of the Lasserre semidefinite programming hierarchy for graph isomorphism can be expressed as a homomorphism indistinguishability relation. In other words, we define a class $\mathcal{L}_t$ of graphs such that graphs $G$ and $H$ are not distinguished by the $t^\text{th}$ level of the Lasserre hierarchy if and only if they admit the same number of homomorphisms from any graph in $\mathcal{L}_t$. By analysing the treewidth of graphs in $\mathcal{L}_t$ we prove that the $3t^\text{th}$ level of Sherali--Adams linear programming hierarchy is as strong as the $t^\text{th}$ level of Lasserre. Moreover, we show that this is best possible in the sense that $3t$ cannot be lowered to $3t-1$ for any $t$. The same result holds for the Lasserre hierarchy with non-negativity constraints, which we similarly characterise in terms of homomorphism indistinguishability over a family $\mathcal{L}_t^+$ of graphs. Additionally, we give characterisations of level-$t$ Lasserre with non-negativity constraints in terms of logical equivalence and via a graph colouring algorithm akin to the Weisfeiler--Leman algorithm. This provides a polynomial time algorithm for determining if two given graphs are distinguished by the $t^\text{th}$ level of the Lasserre hierarchy with non-negativity constraints.
翻译:我们显示, Lasserre 半确定性编程等级的 $>t{ text{th} $是否可行, 只有在它们承认以 $mathal{ L%t$ 任何图表中相同数量的同质性时, 才能用 $molor 表达成像。 换句话说, 我们定义了一个等级 $\ mathcal{ L% t$ 。 这样, 图表的 $G$ 和 $H$ 没有被 $t@ text{th} 等级所区分。 此外, 我们表明, 最有可能的是, 3t$不能从任何图表中调低到 $3t1美元 。 通过分析 $molfrent ral_ dalcal_lal_ talcal_ talgal_ tal_ ralformal_ rality rality ral_ ral- ral_ ral- ral- ligal- ral- ral- ralislal- ral- ral- ral- ral- ral- ral- ral- ral- lexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)))), 我们xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx