Few-shot language learners adapt knowledge from a pre-trained model to recognize novel classes from a few-labeled sentences. In such settings, fine-tuning a pre-trained language model can cause severe over-fitting. In this paper, we propose an Embedding Hallucination (EmbedHalluc) method, which generates auxiliary embedding-label pairs to expand the fine-tuning dataset. The hallucinator is trained by playing an adversarial game with the discriminator, such that the hallucinated embedding is indiscriminative to the real ones in the fine-tuning dataset. By training with the extended dataset, the language learner effectively learns from the diverse hallucinated embeddings to overcome the over-fitting issue. Experiments demonstrate that our proposed method is effective in a wide range of language tasks, outperforming current fine-tuning methods. Further, we show that EmbedHalluc outperforms other methods that address this over-fitting problem, such as common data augmentation, semi-supervised pseudo-labeling, and regularization. The code will be made available at: https://github.com/yiren-jian/EmbedHalluc.
翻译:少见的语言学习者从经过预先训练的模型中调整知识,以辨别有少数标签的句子的新类。 在这样的环境下, 微调经过训练的语文模型可能会造成严重的过度使用。 在本文中, 我们提出一种嵌入的神圣化( EmbedHalluc) 方法, 产生辅助嵌入的标签配对, 以扩大微调数据集。 幻觉师通过与歧视者玩对立游戏来训练, 使幻觉嵌入与微调数据集中的真实嵌入不相容。 通过对扩大数据集进行培训, 语言学习者能够有效地从各种被拉入的神圣化嵌入中学习, 以克服过于合适的问题。 实验表明我们所提议的方法在广泛的语言任务中是有效的, 超过目前的微调方法。 此外, 我们展示了 EmbedHalluc 超越了解决这一过分适应问题的其他方法, 例如常见的数据增强、 半超模化的假标签和正规化。 代码将在 https:// gius/ burrembs.