Designing an incentive compatible auction that maximizes expected revenue is a central problem in Auction Design. Theoretical approaches to the problem have hit some limits in the past decades and analytical solutions are known for only a few simple settings. Computational approaches to the problem through the use of LPs have their own set of limitations. Building on the success of deep learning, a new approach was recently proposed by Duetting et al. (2019) in which the auction is modeled by a feed-forward neural network and the design problem is framed as a learning problem. The neural architectures used in that work are general purpose and do not take advantage of any of the symmetries the problem could present, such as permutation equivariance. In this work, we consider auction design problems that have permutation-equivariant symmetry and construct a neural architecture that is capable of perfectly recovering the permutation-equivariant optimal mechanism, which we show is not possible with the previous architecture. We demonstrate that permutation-equivariant architectures are not only capable of recovering previous results, they also have better generalization properties.
翻译:设计一个奖励兼容的拍卖,最大限度地增加预期收入是拍卖设计中的一个中心问题。在过去几十年中,这个问题的理论方法已经达到某些限制,而且只有几个简单的环境才知道有分析解决办法。通过使用LP来解决这个问题的计算方法有其自己的一套限制。根据深层次学习的成功,杜丁等人(2019年)最近提出了一项新方法,在这种方法中,拍卖由饲料-向前神经网络建模,设计问题被设计成一个学习问题。这项工作中使用的神经结构是一般目的,没有利用问题可能产生的任何对称,例如变异等。在这项工作中,我们考虑到拍卖设计问题,这些问题具有变异-等对称性,并构建一个能够完全恢复变异-等最佳机制的神经结构,我们从以前的结构中可以看出这是不可能的。我们证明,变异性结构不仅能够恢复以前的结果,而且它们也有更好的一般化特性。