Our interest is in replicated network data with multiple networks observed across the same set of nodes. Examples include brain connection networks, in which nodes corresponds to brain regions and replicates to different individuals, and ecological networks, in which nodes correspond to species and replicates to samples collected at different locations and/or times. Our goal is to infer a hierarchical structure of the nodes at a population level, while performing multi-resolution clustering of the individual replicates. In brain connectomics, the focus is on inferring common relationships among the brain regions, while characterizing inter-individual variability in an easily interpretable manner. To accomplish this, we propose a Bayesian hierarchical model, while providing theoretical support in terms of identifiability and posterior consistency, and design efficient methods for posterior computation. We provide novel technical tools for proving model identifiability, which are of independent interest. Our simulations and application to brain connectome data provide support for the proposed methodology.
翻译:暂无翻译