Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the used data augmentation is chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data and during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution and learning it using Bayesian model selection, which has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.
翻译:数据增强通常用于通过强制执行输入的某些转换保存输出的知识来提高深层次学习的绩效。 目前, 所使用的数据增强是通过人类的努力和昂贵的交叉校验选择的, 这使得新数据集难以应用。 我们开发了一种方便的梯度法, 用于在没有验证数据的情况下和在深层神经网络培训中选择数据增强。 我们的方法依赖于将数据增强作为先前使用Bayesian模型选择的变数来表述和学习数据增强, 这在Gaussian进程中已经证明是有效的, 但尚未用于深神经网络。 我们提出一个与边际可能性不同的Kronecker- Flaplace近似点, 作为我们的目标, 没有人类监管或验证数据, 就可以优化数据。 我们表明, 我们的方法可以成功地恢复数据中存在的差异, 这样可以提高图像数据集的概括和数据效率 。