The network embedding task is to represent the node in the network as a low-dimensional vector while incorporating the topological and structural information. Most existing approaches solve this problem by factorizing a proximity matrix, either directly or implicitly. In this work, we introduce a network embedding method from a new perspective, which leverages Modern Hopfield Networks (MHN) for associative learning. Our network learns associations between the content of each node and that node's neighbors. These associations serve as memories in the MHN. The recurrent dynamics of the network make it possible to recover the masked node, given that node's neighbors. Our proposed method is evaluated on different downstream tasks such as node classification and linkage prediction. The results show competitive performance compared to the common matrix factorization techniques and deep learning based methods.
翻译:网络嵌入的任务是将网络中的节点作为低维矢量,同时纳入表层和结构信息。 大多数现有办法都通过直接或隐含的近距离矩阵化因素来解决这个问题。 在这项工作中,我们从新的角度引入了网络嵌入方法,利用现代Hopfield网络(MHN)进行联系学习。我们的网络学习每个节点的内容和结点的邻居之间的联系。这些协会在MHN中起到记忆的作用。网络的经常性动态使得有可能恢复掩蔽节点,因为节点是邻近的。我们建议的方法是根据不同的下游任务进行评估,例如节点分类和联系预测。结果显示与通用矩阵因子化技术和深层次学习方法相比有竞争力的业绩。