Quantization is a technique to reduce the computation and memory cost of DNN models, which are getting increasingly large. Existing quantization solutions use fixed-point integer or floating-point types, which have limited benefits, as both require more bits to maintain the accuracy of original models. On the other hand, variable-length quantization uses low-bit quantization for normal values and high-precision for a fraction of outlier values. Even though this line of work brings algorithmic benefits, it also introduces significant hardware overheads due to variable-length encoding and decoding. In this work, we propose a fixed-length adaptive numerical data type called ANT to achieve low-bit quantization with tiny hardware overheads. Our data type ANT leverages two key innovations to exploit the intra-tensor and inter-tensor adaptive opportunities in DNN models. First, we propose a particular data type, flint, that combines the advantages of float and int for adapting to the importance of different values within a tensor. Second, we propose an adaptive framework that selects the best type for each tensor according to its distribution characteristics. We design a unified processing element architecture for ANT and show its ease of integration with existing DNN accelerators. Our design results in 2.8$\times$ speedup and 2.5$\times$ energy efficiency improvement over the state-of-the-art quantization accelerators.


翻译:量化是一种降低计算和存储数字NN模型的计算和记忆成本的技术,这些模型正在变得越来越大。现有的量化解决方案使用固定点整数或浮动点数据类型,这些类型的好处有限,因为两者都需要更多位子才能保持原始模型的准确性。另一方面,变量宽度对于正常值使用低位量化,对于部分外值则使用高精度。尽管这一行工作带来了算法效益,但它也带来了因变量长度编码和解码而导致的大量硬件间接费用。在这项工作中,我们建议采用固定长度的适应性数字数据类型,称为ANT,以达到低位整数整数或浮点数据类型,这些类型都具有有限的效益,因为两者都需要更多位位元来保持原始模型的准确性。另一方面,变量宽度量化利用两种关键创新,以利用十倍内和倍间适应机会进行正常值的正常值。首先,我们提出一种特定的数据类型,即板块,将浮动的优势和内不同值的重要性结合起来。第二,我们建议一个适应框架,为每个调价美元最佳类型选择每个调的调价元数字数字数字,以达到小硬件顶端的硬度,以显示其设计速度结构的精度结构。我们设计设计,并显示其25度结构的精度结构的精度结构的精度,以其精度结构的精度,以图的精度结构。我们设计一个比。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员