We introduce a PDE-based node-to-element contact formulation as an alternative to classical, purely geometrical formulations. It is challenging to devise solutions to nonsmooth contact problem with continuous gap using finite element discretizations. We herein achieve this objective by constructing an approximate distance function (ADF) to the boundaries of solid objects, and in doing so, also obtain universal uniqueness of contact detection. Unilateral constraints are implemented using a mixed model combining the screened Poisson equation and a force element, which has the topology of a continuum element containing an additional incident node. An ADF is obtained by solving the screened Poisson equation with constant essential boundary conditions and a variable transformation. The ADF does not explicitly depend on the number of objects and a single solution of the partial differential equation for this field uniquely defines the contact conditions for all incident points in the mesh. Having an ADF field to any obstacle circumvents the multiple target surfaces and avoids the specific data structures present in traditional contact-impact algorithms. We also relax the interpretation of the Lagrange multipliers as contact forces, and the Courant--Beltrami function is used with a mixed formulation producing the required differentiable result. We demonstrate the advantages of the new approach in two- and three-dimensional problems that are solved using Newton iterations. Simultaneous constraints for each incident point are considered.
翻译:我们采用基于PDE的节点到元素接触配方,作为传统纯几何式配方的替代物,我们采用基于PDE的节点到元素的接触配方,以取代传统的纯几何式配方。用有限的元素分解来持续差异,很难解决非单向接触问题。我们在此通过在固态物体的界限上建立大致的距离函数(ADF)来实现这一目标,并在这样做时,获得普遍独特的接触探测;采用混合模型来实施单方面限制,将筛选的Poisson方程式和具有包含额外事件节点的连续元素的形态学成。通过用不变的基本边界条件和变量转换解决筛选的Poisson方程式,获得ADF。ADF并不明确取决于对象的数量和这个领域部分差异方的单一解决办法,而是独有地界定所有网格中事件点的接触条件。将ADFF字段与任何障碍绕过多个目标表面,避免传统接触影响算法中存在的具体数据结构。我们还放宽了对Lagrange 乘数的解释,作为接触力,而Corant-Bermain-Bermain-brant-Be-destrain-destrain-destrain 方法又使用了一种混合式组合式式的优势。我们使用了三种模式,这三种模式的优势。我们使用了两种办法的组合式处理。</s>