We introduce a PDE-based node-to-element contact formulation as an alternative to classical, purely geometrical formulations. It is challenging to devise solutions to nonsmooth contact problem with continuous gap using finite element discretizations. We herein achieve this objective by constructing an approximate distance function (ADF) to the boundaries of solid objects, and in doing so, also obtain universal uniqueness of contact detection. Unilateral constraints are implemented using a mixed model combining the screened Poisson equation and a force element, which has the topology of a continuum element containing an additional incident node. An ADF is obtained by solving the screened Poisson equation with constant essential boundary conditions and a variable transformation. The ADF does not explicitly depend on the number of objects and a single solution of the partial differential equation for this field uniquely defines the contact conditions for all incident points in the mesh. Having an ADF field to any obstacle circumvents the multiple target surfaces and avoids the specific data structures present in traditional contact-impact algorithms. We also relax the interpretation of the Lagrange multipliers as contact forces, and the Courant--Beltrami function is used with a mixed formulation producing the required differentiable result. We demonstrate the advantages of the new approach in two- and three-dimensional problems that are solved using Newton iterations. Simultaneous constraints for each incident point are considered.


翻译:我们采用基于PDE的节点到元素接触配方,作为传统纯几何式配方的替代物,我们采用基于PDE的节点到元素的接触配方,以取代传统的纯几何式配方。用有限的元素分解来持续差异,很难解决非单向接触问题。我们在此通过在固态物体的界限上建立大致的距离函数(ADF)来实现这一目标,并在这样做时,获得普遍独特的接触探测;采用混合模型来实施单方面限制,将筛选的Poisson方程式和具有包含额外事件节点的连续元素的形态学成。通过用不变的基本边界条件和变量转换解决筛选的Poisson方程式,获得ADF。ADF并不明确取决于对象的数量和这个领域部分差异方的单一解决办法,而是独有地界定所有网格中事件点的接触条件。将ADFF字段与任何障碍绕过多个目标表面,避免传统接触影响算法中存在的具体数据结构。我们还放宽了对Lagrange 乘数的解释,作为接触力,而Corant-Bermain-Bermain-brant-Be-destrain-destrain-destrain 方法又使用了一种混合式组合式式的优势。我们使用了三种模式,这三种模式的优势。我们使用了两种办法的组合式处理。</s>

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员