This paper focuses on computing the convex conjugate operation that arises when solving Euclidean Wasserstein-2 optimal transport problems. This conjugation, which is also referred to as the Legendre-Fenchel conjugate or $c$-transform, is considered difficult to compute and in practice, Wasserstein-2 methods are limited by not being able to exactly conjugate the dual potentials in continuous space. I show that combining amortized approximations to the conjugate with a solver for fine-tuning is computationally easy. This combination significantly improves the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin et al. (2021) and is able to model many 2-dimensional couplings and flows considered in the literature. All of the baselines, methods, and solvers in this paper are available at http://github.com/facebookresearch/w2ot


翻译:本文侧重于计算在解决欧克利底安·瓦西斯坦-2最佳运输问题时产生的共振共振操作。这种共振(也称为Tulturre-Fenchel conjuge 或$c$-transform)被认为难以计算,而且在实践中,瓦西斯坦-2方法由于无法精确地将连续空间的双重潜力混为一体而受到限制。我表明,将分解近似和精细调整的解析器相结合,在计算上是容易的。这种结合极大地提高了Korotin等人(2021年)为瓦西斯坦-2基准所学的运输地图的质量,并且能够模拟文献中考虑的许多二维联动和流动。本文中的所有基线、方法和解析器都可在http://github.com/facebourseresearch/w2ot查阅。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
48+阅读 · 2021年10月26日
专知会员服务
26+阅读 · 2021年4月2日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月4日
Arxiv
0+阅读 · 2022年12月2日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
0+阅读 · 2022年11月29日
VIP会员
相关VIP内容
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
48+阅读 · 2021年10月26日
专知会员服务
26+阅读 · 2021年4月2日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员