We study sublinear time algorithms for estimating the size of maximum matching. After a long line of research, the problem was finally settled by Behnezhad [FOCS'22], in the regime where one is willing to pay an approximation factor of $2$. Very recently, Behnezhad et al.[SODA'23] improved the approximation factor to $(2-\frac{1}{2^{O(1/\gamma)}})$ using $n^{1+\gamma}$ time. This improvement over the factor $2$ is, however, minuscule and they asked if even $1.99$-approximation is possible in $n^{2-\Omega(1)}$ time. We give a strong affirmative answer to this open problem by showing $(1.5+\epsilon)$-approximation algorithms that run in $n^{2-\Theta(\epsilon^{2})}$ time. Our approach is conceptually simple and diverges from all previous sublinear-time matching algorithms: we show a sublinear time algorithm for computing a variant of the edge-degree constrained subgraph (EDCS), a concept that has previously been exploited in dynamic [Bernstein Stein ICALP'15, SODA'16], distributed [Assadi et al. SODA'19] and streaming [Bernstein ICALP'20] settings, but never before in the sublinear setting. Independent work: Behnezhad, Roghani and Rubinstein [BRR'23] independently showed sublinear algorithms similar to our Theorem 1.2 in both adjacency list and matrix models. Furthermore, in [BRR'23], they show additional results on strictly better-than-1.5 approximate matching algorithms in both upper and lower bound sides.
翻译:我们研究亚线性时间算法来估计最大匹配的大小。 经过一长行的研究, 问题终于由贝尼沙德(FOCS'22)解决了。 在愿意支付近似系数$2美元的制度下, 问题终于由贝尼沙德(FOCS'22)解决了。 最近, 贝尼沙德等人(SDA'23) 将近似系数提高到$( 2\\\\1\\\\2\\\2\\O(Gama) O(1/\\ gamma) $), 使用 $n ⁇ 1\\\\\\\\ gamma} 美元的时间来估计最大匹配的大小。 但是, 与所有前次线性基线匹配算法相比, 微线性( $ 19$) 近似( FOCS- Oral- commall), 显示一个亚线性( 直线性( 19) 直线性( 直径) 直线性( 直径) 直线性( 直径直线) 直线) 直径( 直径) 直径( 直径) 直径) 直径( 直径) 直径) 直线) 直径(SDIS(SDIS(SDIS) 直线) 直线) 底) 平(SDIS(SDIS( ) ) ) ),, 显示(SDIS(SDIS( ) ) ) 上) 根) 根(SDIS(SDIS( ) ) 根) 根) 底(SDIS) 平地( 根( ) ) 根) ) ) 根( ) 根( ) 根( ) ) ) 根) 根 根( 根 根 底) ) 底( 根) 根 底( 根 根 根 根 根 根 ) ) 根 根 底) 根 底) 根 根 底) 根 根 根 根 根 根 根基) 根基) 底)