This paper proposes Distributed Model Predictive Covariance Steering (DMPCS), a novel method for safe multi-robot control under uncertainty. The scope of our approach is to blend covariance steering theory, distributed optimization and model predictive control (MPC) into a single methodology that is safe, scalable and decentralized. Initially, we pose a problem formulation that uses the Wasserstein distance to steer the state distributions of a multi-robot team to desired targets, and probabilistic constraints to ensure safety. We then transform this problem into a finite-dimensional optimization one by utilizing a disturbance feedback policy parametrization for covariance steering and a tractable approximation of the safety constraints. To solve the latter problem, we derive a decentralized consensus-based algorithm using the Alternating Direction Method of Multipliers (ADMM). This method is then extended to a receding horizon form, which yields the proposed DMPCS algorithm. Simulation experiments on large-scale problems with up to hundreds of robots successfully demonstrate the effectiveness and scalability of DMPCS. Its superior capability in achieving safety is also highlighted through a comparison against a standard stochastic MPC approach. A video with all simulation experiments is available in https://youtu.be/Hks-0BRozxA.
翻译:本文提出分配模型预测共变指导(DMPCS),这是在不确定情况下安全多机器人控制的一种新颖方法。我们的方法范围是将共变指导理论、分布优化和模型预测控制(MPC)结合到一种安全、可缩放和分散的单一方法中。最初,我们提出了一个问题配方,用瓦瑟斯坦距离将多机器人团队的状态分布引导到预期目标,以及确保安全的概率性限制。然后,我们利用扰动反馈政策配对法将这一问题转化为一个有限维度优化。我们利用扰动反馈政策配对共变方向和安全限制的可伸缩近度,将共变优化和模型预测控制(MPC)结合到一个安全的单一方法中。为了解决后一个问题,我们利用多种用户互换方向法(ADMMMM)来形成一个分散的基于共识的算法。然后,将这种方法扩大到一个让DMPCS演算法产生后回归的地平面表。对多达数百个机器人的大规模问题进行模拟实验,成功展示DMPCS的效能和可缩性。通过A/MVAsimAstototototototototomoz进行所有的模拟的模拟实验来突出。