Cut-cell meshes are an attractive alternative to avoid common mesh generation problems. For hyperbolic problems they pose additional challenges, as elements can become arbitrarily small, leading to prohibitive time step restrictions for explicit time stepping methods. To alleviate this small cell problem we consider a particular stabilization method, the Domain of Dependence (DoD) method. So far, while posessing many favorable theoretical properties, in two dimensions the DoD method was essentially restricted to the transport equation. In this work we extend the DoD method to the acoustic wave equation in two dimensions and provide numerical results for validation.
翻译:切割单元网格是避免常见网格生成问题的一种有吸引力的替代方法。对于双曲型问题,它们会带来额外的挑战,因为元素可能变得非常小,导致一些显式时间步进方法的限制变得不可承受。为了缓解这个小单元问题,我们考虑了特定的稳定化方法——依赖域(DoD)方法。到目前为止,尽管拥有许多有利的理论特性,但在二维情况下,DoD方法基本上仅限于输运方程。在本研究中,我们将DoD方法扩展到了坐标系下的二维声波方程,并提供了数值结果进行验证。