This paper proposes a novel method for deep learning based on the analytical convolution of multidimensional Gaussian mixtures. In contrast to tensors, these do not suffer from the curse of dimensionality and allow for a compact representation, as data is only stored where details exist. Convolution kernels and data are Gaussian mixtures with unconstrained weights, positions, and covariance matrices. Similar to discrete convolutional networks, each convolution step produces several feature channels, represented by independent Gaussian mixtures. Since traditional transfer functions like ReLUs do not produce Gaussian mixtures, we propose using a fitting of these functions instead. This fitting step also acts as a pooling layer if the number of Gaussian components is reduced appropriately. We demonstrate that networks based on this architecture reach competitive accuracy on Gaussian mixtures fitted to the MNIST and ModelNet data sets.
翻译:本文根据多维高斯混合物的分析演进提出了一种新的深层次学习方法。 与多维高斯混合物不同的是,这些混合物并不受到维度的诅咒,允许采用紧凑的表达方式,因为数据只储存在有细节的地方。 进化内核和数据是高斯混合物,其重量、位置和共变基质不受限制。 与离散的共变网络相似, 每一卷级步骤产生若干特点渠道, 由独立的高斯混合物代表。 由于传统转移功能如ReLUs并不产生高斯混合物, 我们建议使用这些功能的配装。 如果高斯组件的数量适当减少, 这一适当步骤也起到集合层的作用。 我们证明基于这一结构的网络在与MNIST和模型网络数据集相配的高斯混合物上达到了竞争性的精度。