The problem of solving linear systems is one of the most fundamental problems in computer science, where given a satisfiable linear system $(A,b)$, for $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, we wish to find a vector $x \in \mathbb{R}^n$ such that $Ax = b$. The current best algorithms for solving dense linear systems reduce the problem to matrix multiplication, and run in time $O(n^{\omega})$. We consider the problem of finding $\varepsilon$-approximate solutions to linear systems with respect to the $L_2$-norm, that is, given a satisfiable linear system $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$, find an $x \in \mathbb{R}^n$ such that $||Ax - b||_2 \leq \varepsilon||b||_2$. Our main result is a fine-grained reduction from computing the rank of a matrix to finding $\varepsilon$-approximate solutions to linear systems. In particular, if the best known $O(n^\omega)$ time algorithm for computing the rank of $n \times O(n)$ matrices is optimal (which we conjecture is true), then finding an $\varepsilon$-approximate solution to a dense linear system also requires $\tilde{\Omega}(n^{\omega})$ time, even for $\varepsilon$ as large as $(1 - 1/\text{poly}(n))$. We also prove (under some modified conjectures for the rank-finding problem) optimal hardness of approximation for sparse linear systems, linear systems over positive semidefinite matrices, well-conditioned linear systems, and approximately solving linear systems with respect to the $L_p$-norm, for $p \geq 1$. At the heart of our results is a novel reduction from the rank problem to a decision version of the approximate linear systems problem. This reduction preserves properties such as matrix sparsity and bit complexity.
翻译:解决线性系统的问题是计算机科学中最根本的问题之一。 在计算机科学中, 用于解决密集的直线系统的最佳算法将问题降低到矩阵的倍增, 并用时间运行 $O(n ⁇ omega)$。 我们考虑在 $_mathb{R ⁇ n $ 和 $ b 上找到一个矢量 $ 在 mathb{R ⁇ {R ⁇ n$ 解决线性系统的问题。 在 以 maxx= b= b$ 解决高密度直线性系统的问题中, 将问题降低到 美元。 在 以 美元为 美元 的直线性系统, 也通过 美元为 美元 美元 的直线性系统找到 。