Backward stochastic differential equations (BSDEs) belong nowadays to the most frequently studied equations in stochastic analysis and computational stochastics. BSDEs in applications are often nonlinear and high-dimensional. In nearly all cases such nonlinear high-dimensional BSDEs cannot be solved explicitly and it has been and still is a very active topic of research to design and analyze numerical approximation methods to approximatively solve nonlinear high-dimensional BSDEs. Although there are a large number of research articles in the scientific literature which analyze numerical approximation methods for nonlinear BSDEs, until today there has been no numerical approximation method in the scientific literature which has been proven to overcome the curse of dimensionality in the numerical approximation of nonlinear BSDEs in the sense that the number of computational operations of the numerical approximation method to approximatively compute one sample path of the BSDE solution grows at most polynomially in both the reciprocal $1/ \varepsilon$ of the prescribed approximation accuracy $\varepsilon \in (0,\infty)$ and the dimension $d\in \mathbb N=\{1,2,3,\ldots\}$ of the BSDE. It is the key contribution of this article to overcome this obstacle by introducing a new Monte Carlo-type numerical approximation method for high-dimensional BSDEs and by proving that this Monte Carlo-type numerical approximation method does indeed overcome the curse of dimensionality in the approximative computation of solution paths of BSDEs.


翻译:后向偏向偏差方程式( BSDEs) 属于当今最经常研究的随机分析和计算偏差方程式( BSDEs ) 。 应用中的 BSDE 通常不是线性和高维。 在几乎所有情况下,这类非线性高的 BSDEs 都无法明确解决,而且它一直是并且仍然是研究的一个非常活跃的课题, 用于设计和分析数字近差方法, 以近似地解解非线性高维度的 BSDE 方程式。 尽管科学文献中有大量研究文章分析非线性 BSDEs 的数值近似方法, 但直到今天科学文献中还没有使用过数字近似方法。 在非线性 BSDE 方公式的数值近似近似性近似性上, 以 $nvareplon_\ pal- int 的双向直径直径方法( 0,\ liver=xxxxxxxxxxxxxxx) 的计算操作次数, 数字接近性近似直径直径直线性方法, 递性递化的Bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月15日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员