We consider the task of heavy-tailed statistical estimation given streaming $p$-dimensional samples. This could also be viewed as stochastic optimization under heavy-tailed distributions, with an additional $O(p)$ space complexity constraint. We design a clipped stochastic gradient descent algorithm and provide an improved analysis, under a more nuanced condition on the noise of the stochastic gradients, which we show is critical when analyzing stochastic optimization problems arising from general statistical estimation problems. Our results guarantee convergence not just in expectation but with exponential concentration, and moreover does so using $O(1)$ batch size. We provide consequences of our results for mean estimation and linear regression. Finally, we provide empirical corroboration of our results and algorithms via synthetic experiments for mean estimation and linear regression.
翻译:我们考虑过重的统计估计任务,以不断流出以美元为单位的样本为单位。这也可以被视为在重尾分配条件下的随机优化,加上额外的空间复杂度限制。我们设计了一个剪切的随机梯度梯度下降算法,并在根据随机梯度的噪音的更细微的条件下提供更好的分析,我们在分析一般统计估计问题产生的随机优化问题时显示这一点至关重要。我们的结果保证了不仅在预期中,而且与指数集中的趋同,而且使用1美元分批体大小。我们提供了我们结果的结果对中值估计和线性回归的后果。最后,我们通过中值估计和线性回归的合成实验,从经验上证实了我们的结果和算法。