We propose local space-time approximation spaces for parabolic problems that are optimal in the sense of Kolmogorov and may be employed in multiscale and domain decomposition methods. The diffusion coefficient can be arbitrarily rough in space and time. To construct local approximation spaces we consider a compact transfer operator that acts on the space of local solutions and covers the full time dimension. The optimal local spaces are then given by the left singular vectors of the transfer operator. To prove compactness of the latter we combine a suitable parabolic Caccioppoli inequality with the compactness theorem of Aubin-Lions. In contrast to the elliptic setting [I. Babu\v{s}ka and R. Lipton, Multiscale Model. Simul., 9 (2011), pp. 373-406] we need an additional regularity result to combine the two results. Furthermore, we employ the generalized finite element method to couple local spaces and construct an approximation of the global solution. Since our approach yields reduced space-time bases, the computation of the global approximation does not require a time stepping method and is thus computationally efficient. Moreover, we derive rigorous local and global a priori error bounds. In detail, we bound the global approximation error in a graph norm by the local errors in the $L^2(H^1)$-norm, noting that the space the transfer operator maps to is equipped with this norm. Numerical experiments demonstrate an exponential decay of the singular values of the transfer operator and the local and global approximation errors for problems with high contrast or multiscale structure regarding space and time.


翻译:我们为抛物线问题建议当地空间-时间近似空间,这些空间在科尔莫戈洛夫意义上是最佳的,并可用于多尺度和域分解方法。 扩散系数在空间和时间上可能是任意的粗糙的。 要构建本地近距离空间, 我们考虑的是在本地解决方案空间上运行并覆盖全时层面的紧凑传输操作器。 然后, 由转移操作器的左单向向向导提供最佳的本地空间空间空间空间。 要证明后者的紧凑性, 我们把适当的抛物线卡西奥波波利不平等与Aubin-Lion的紧凑性定理错误结合起来。 与椭圆形设置[I. Babu\v{s]ka和R. Lipton, 多尺度模型。 Simul., 9(2011), pp.373- 406] 相比, 我们需要更多的常规转移操作器。 此外, 我们使用通用的限定要素方法来将本地空间时间基础基础和Axoral标准值计算, 因此,我们用精确的精确度的当地和精确度结构来显示全球水平的精确度的轨道, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员