Function values are, in some sense, "almost as good" as general linear information for $L_2$-approximation (optimal recovery, data assimilation) of functions from a reproducing kernel Hilbert space. This was recently proved by new upper bounds on the sampling numbers under the assumption that the singular values of the embedding of this Hilbert space into $L_2$ are square-summable. Here we mainly prove new lower bounds. In particular we prove that the sampling numbers behave worse than the approximation numbers for Sobolev spaces with small smoothness. Hence there can be a logarithmic gap also in the case where the singular numbers of the embedding are square-summable. We first prove new lower bounds for the integration problem, again for rather classical Sobolev spaces of periodic univariate functions.
翻译:从某种意义上说,函数值与复制的Hilbert 空间内核的函数的普通线性信息“几乎一样好 ” ( 最优化的恢复、数据同化) 一样。 这一点最近通过取样数字的新上限得到了证明, 假设Hilbert 空间嵌入到$L_ 2 美元的单值是平面的。 这里我们主要证明新的下限。 特别是, 我们证明抽样数字的表现比小光滑的Sobolev 空间的近似值差。 因此, 在嵌入的单数是平面的的情况下, 也可能存在对数差距。 我们首先证明整合问题的新下限, 对于周期性单体功能的比较典型的 Sobolev 空间, 我们首先证明新的较低界限 。