We abstract and study \emph{reachability preservers}, a graph-theoretic primitive that has been implicit in prior work on network design. Given a directed graph $G = (V, E)$ and a set of \emph{demand pairs} $P \subseteq V \times V$, a reachability preserver is a sparse subgraph $H$ that preserves reachability between all demand pairs. Our first contribution is a series of extremal bounds on the size of reachability preservers. Our main result states that, for an $n$-node graph and demand pairs of the form $P \subseteq S \times V$ for a small node subset $S$, there is always a reachability preserver on $O(n+\sqrt{n |P| |S|})$ edges. We additionally give a lower bound construction demonstrating that this upper bound characterizes the settings in which $O(n)$ size reachability preservers are generally possible, in a large range of parameters. The second contribution of this paper is a new connection between extremal graph sparsification results and classical Steiner Network Design problems. Surprisingly, prior to this work, the osmosis of techniques between these two fields had been superficial. This allows us to improve the state of the art approximation algorithms for the most basic Steiner-type problem in directed graphs from the $O(n^{0.6+\varepsilon})$ of Chlamatac, Dinitz, Kortsarz, and Laekhanukit (SODA'17) to $O(n^{4/7+\varepsilon})$.
翻译:我们抽取并研究 emph{ 传通性保护者} 。 我们的第一个贡献是一系列关于可达性保护者规模的极端界限。 我们的主要结果显示, 对于一个名为$G = (V, E) 的直方向图形和需求配对, 以及一组用于小节点的V$ (S$), $P\subseteq V\time V 美元, 一个可达性保护者是一个稀薄的子图示 $H$, 保存所有需求配对之间的可达性。 我们的第一项贡献是一系列关于可达性保护者规模的极限界限。 我们的主要结果显示, 对于一个$(n) 节点的图表和需求配对 $(V) $ =(subseteseqsetequal $ ) 的组合, 这个模型的第二个贡献是Storyloralal netroupal rouple