Unobserved confounding is one of the main challenges when estimating causal effects. We propose a causal reduction method that, given a causal model, replaces an arbitrary number of possibly high-dimensional latent confounders with a single latent confounder that takes values in the same space as the treatment variable, without changing the observational and interventional distributions the causal model entails. This allows us to estimate the causal effect in a principled way from combined data without relying on the common but often unrealistic assumption that all confounders have been observed. We apply our causal reduction in three different settings. In the first setting, we assume the treatment and outcome to be discrete. The causal reduction then implies bounds between the observational and interventional distributions that can be exploited for estimation purposes. In certain cases with highly unbalanced observational samples, the accuracy of the causal effect estimate can be improved by incorporating observational data. Second, for continuous variables and assuming a linear-Gaussian model, we derive equality constraints for the parameters of the observational and interventional distributions. Third, for the general continuous setting (possibly nonlinear and non-Gaussian), we parameterize the reduced causal model using normalizing flows, a flexible class of easily invertible nonlinear transformations. We perform a series of experiments on synthetic data and find that in several cases the number of interventional samples can be reduced when adding observational training samples without sacrificing accuracy.


翻译:在估计因果关系时,我们提出了一种因果减少方法,根据一个因果模型,用一个与治疗变量在同一空间、不改变因果模型所伴随的观察和干预分布的单一潜伏混淆器,取代任意数量的可能高维潜伏沉积器,将数值与处理变量在同一空间,而不改变因果模型所伴随的观察和干预分布。这使我们能够从综合数据中以原则性方式估计因果关系,而不必依赖观察到所有混淆者的常见但往往不切实际的假设。我们在三个不同的环境中应用我们的因果减少。在第一个环境中,我们假定治疗和结果是分立的。因此,因果减少意味着可以用于估算目的的观测和干预分布之间的界限。在某些情况下,如果观测样本高度不平衡,则可以通过纳入观测数据来改进因果估计的准确性。第二,对于连续变量和假设线性-冈比亚模型,我们可以从观察和干预分布参数中得出平等性限制。第三,对于一般连续设置(在不精确性观测样本中可能非线性和非伽西值的精确性),因此,我们用一个正常的、不易变的模型来测量性模型来测量。

1
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员