Diffusion-based generative models (DBGMs) perturb data to a target noise distribution and reverse this process to generate samples. The choice of noising process, or inference diffusion process, affects both likelihoods and sample quality. For example, extending the inference process with auxiliary variables leads to improved sample quality. While there are many such multivariate diffusions to explore, each new one requires significant model-specific analysis, hindering rapid prototyping and evaluation. In this work, we study Multivariate Diffusion Models (MDMs). For any number of auxiliary variables, we provide a recipe for maximizing a lower-bound on the MDMs likelihood without requiring any model-specific analysis. We then demonstrate how to parameterize the diffusion for a specified target noise distribution; these two points together enable optimizing the inference diffusion process. Optimizing the diffusion expands easy experimentation from just a few well-known processes to an automatic search over all linear diffusions. To demonstrate these ideas, we introduce two new specific diffusions as well as learn a diffusion process on the MNIST, CIFAR10, and ImageNet32 datasets. We show learned MDMs match or surpass bits-per-dims (BPDs) relative to fixed choices of diffusions for a given dataset and model architecture.
翻译:以扩散为基础的基因变异模型(DBGMs) 渗透数据到目标噪音分布中, 并逆向此过程生成样本。 选择降噪过程或推断扩散过程既影响概率, 也影响样本质量。 例如, 以辅助变量扩展推导过程, 提高样本质量。 虽然有许多这样的多变量扩散模型需要探索, 但每个新模型都需要大量的模型特定分析, 妨碍快速原型和评估。 在这项工作中, 我们研究多变量( MDMMs ) 。 对于任何数量的辅助变量, 我们提供了一种配方, 使MDMs 的可能性最大化, 而不要求任何模型分析。 我们然后演示如何为特定目标噪音分布而将扩散过程参数化为参数化; 这两个点一起能够优化发酵扩散过程。 优化扩散实验从几个众所周知的流程到所有线性扩散的自动搜索。 为了展示这些想法, 我们引入了两个新的具体传播方式, 并学习MNIST、 CIFAR10 和图像Net32 相对数据集成(我们学习了MDMS- mix- mass mass mass mass mass mass mass mass mass mass) 。</s>