In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the inner loop and the unforced outer loop are each almost globally asymptotically stable. Our qualitative approach relies on the absence of chain recurrence for non-equilibrium points of the unforced outer loop, the hyperbolicity of equilibria, and the precompactness of forward trajectories. The result is extended inductively to upper triangular systems with an arbitrary number of subsystems. We show that the required structure of the chain recurrent set can be readily verified, and describe two important classes of systems with this property. We also show that the precompactness requirement can be verified by growth rate conditions on the interconnection term coupling the subsystems. Our results stand in contrast to prior works that require either global asymptotic stability of the subsystems (impossible for smooth systems evolving on general manifolds), time scale separation between the subsystems, or strong disturbance robustness properties of the outer loop. The approach has clear applications in stability certification of cascaded controllers for systems evolving on manifolds.
翻译:在这项工作中,我们给出了一个串级系统几乎全局渐近稳定的充分条件,其中内环路和无迫加外环路各自几乎全局渐近稳定。我们的定性方法基于无迫加外环路的非平衡点的有序回归的缺失、平衡点的双曲性以及前沿轨道的紧性。该结果在归纳上推广到一个具有任意数量子系统的上三角系统。我们展示了需要的有序回归集的结构可以容易地被验证,并描述了两种具有此属性的重要系统类。我们还展示了通过耦合子系统的交互项的增长速率条件可以验证前沿紧性要求。我们的结果与先前的工作形成鲜明对比,先前的工作要求子系统的全局渐近稳定性(对于演化在一般流形上的平滑系统是不可能的),子系统之间具有时间尺度分离,或者外环路具有强扰动鲁棒性。该方法在证明演化在流形上的串级控制器的稳定性认证中具有明显的应用。