Offline reinforcement learning (RL) aims at learning an effective policy from offline datasets without active interactions with the environment. The major challenge of offline RL is the distribution shift that appears when out-of-distribution actions are queried, which makes the policy improvement direction biased by extrapolation errors. Most existing methods address this problem by penalizing the policy for deviating from the behavior policy during policy improvement or making conservative updates for value functions during policy evaluation. In this work, we propose a novel MISA framework to approach offline RL from the perspective of Mutual Information between States and Actions in the dataset by directly constraining the policy improvement direction. Intuitively, mutual information measures the mutual dependence of actions and states, which reflects how a behavior agent reacts to certain environment states during data collection. To effectively utilize this information to facilitate policy learning, MISA constructs lower bounds of mutual information parameterized by the policy and Q-values. We show that optimizing this lower bound is equivalent to maximizing the likelihood of a one-step improved policy on the offline dataset. In this way, we constrain the policy improvement direction to lie in the data manifold. The resulting algorithm simultaneously augments the policy evaluation and improvement by adding a mutual information regularization. MISA is a general offline RL framework that unifies conservative Q-learning (CQL) and behavior regularization methods (e.g., TD3+BC) as special cases. Our experiments show that MISA performs significantly better than existing methods and achieves new state-of-the-art on various tasks of the D4RL benchmark.


翻译:离线强化学习(RL)旨在从离线数据集中学习一项有效的政策,而没有与环境积极互动。离线RL的主要挑战在于,当询问分配外行动时,分配上出现的变化,这使得政策改进方向受到外推错误的偏向。大多数现有方法解决这一问题,在政策改进期间,惩罚政策偏离行为政策,或在政策评价期间保守更新价值功能时,惩罚相互信息。在这项工作中,我们提议一个新的 MISA框架,从国家与行动之间相互信息的角度,从离线RL进入离线RL,直接限制政策改进方向。在直接限制政策改进方向的同时,相互信息衡量行动和状态的相互依存性,这反映了行为代理方在数据收集期间如何对某些环境状态作出反应。为了有效地利用这一信息促进政策学习,MISA构建了政策和Q价值所测量的较低范围。我们显示,优化这一下限相当于最大限度地提高离线数据集的单步改进政策的可能性。在这方面,我们限制政策改进政策的方向是特殊的Q方向,同时显示不断改进的RISA(通过不断改进的常规做法,从而增加共同的RISAL) 的常规评估方法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2022年6月14日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员