Safety filters based on Control Barrier Functions (CBFs) have emerged as a practical tool for the safety-critical control of autonomous systems. These approaches encode safety through a value function and enforce safety by imposing a constraint on the time derivative of this value function. However, synthesizing a valid CBF that is not overly conservative in the presence of input constraints is a notorious challenge. In this work, we propose refining candidate CBFs using formal verification methods to obtain a valid CBF. In particular, we update an expert-synthesized or backup CBF using dynamic programming (DP) based reachability analysis. Our framework guarantees that with every DP iteration the obtained CBF is provably at least as safe as the prior iteration and converges to a valid CBF. Therefore, our proposed method can be used in-the-loop for robotic systems. We demonstrate the practicality of our method to enhance safety and/or reduce conservativeness on a range of nonlinear control-affine systems using various CBF synthesis techniques in simulation.
翻译:基于控制障碍功能(CBFs)的安全过滤器已成为对自主系统进行安全关键控制的一个实用工具,这些方法通过一种价值功能编码安全,并通过对这一值函数的时间衍生物施加限制来强制实施安全。然而,将一个在投入限制情况下不过分保守的有效 CBF 合成为一项臭名昭著的挑战。在这项工作中,我们提议利用正式核查方法改进候选 CBF,以获得有效的 CBF 。特别是,我们利用动态程序(DP)的可达性分析更新一个专家合成或备份 CBF 。我们的框架保证,获得的 CBF 的每一次驱动器与先前的迭代和与一个有效的 CBF 组合一样,至少是安全的。因此,我们提出的方法可以在机器人系统的圈内使用。我们用各种CBF 合成技术来提高一系列非线控制药物系统的安全和/或减少其保守性。我们证明我们使用多种非线控制药物系统模拟的安全性和/或减少其保守性的方法是可行的。