Prophet inequalities are a useful tool for designing online allocation procedures and comparing their performance to the optimal offline allocation. In the basic setting of $k$-unit prophet inequalities, the magical procedure of Alaei (2011) with its celebrated performance guarantee of $1-\frac{1}{\sqrt{k+3}}$ has found widespread adoption in mechanism design and other online allocation problems in online advertising, healthcare scheduling, and revenue management. Despite being commonly used to derive approximately-optimal algorithms for multi-resource allocation problems that suffer from the curse of dimensionality, the tightness of Alaei's procedure for a given $k$ has remained unknown. In this paper we resolve this question, characterizing the optimal procedure and tight bound, and consequently improving the best-known guarantee for $k$-unit prophet inequalities for all $k>1$. We also consider a more general online stochastic knapsack problem where each individual allocation can consume an arbitrary fraction of the initial capacity. We introduce a new "best-fit" procedure for implementing a fractionally-feasible knapsack solution online, with a performance guarantee of $\frac{1}{3+e^{-2}}\approx0.319$, which we also show is tight. This improves the previously best-known guarantee of 0.2 for online knapsack. Our analysis differs from existing ones by eschewing the need to split items into "large" or "small" based on capacity consumption, using instead an invariant for the overall utilization on different sample paths. Finally, we refine our technique for the unit-density special case of knapsack, and improve the guarantee from 0.321 to 0.3557 in the multi-resource appointment scheduling application of Stein et al. (2020).


翻译:先知的不平等是设计在线分配程序和将其业绩与最佳离线分配进行比较的有用工具。 在美元单位先知不平等的基本设置中,阿拉伊(2011年)的神奇程序及其著名的1美元-弗拉克{1unsqrt{k+3 ⁇ {{{{{{{{{{{{{}}}美元业绩保障在机制设计和其他在线分配问题上被广泛采用,在在线广告、医疗保健日程安排和收入管理方面被广泛用来为多资源分配问题找到大致最佳的算法,而这些问题受维度诅咒的影响,而阿拉伊程序对于给定美元单位的美元比例分配问题仍然不为人所知。在本文中,我们解决了这一问题,将最佳程序定性为最佳程序,将最佳程序化程序化为最佳程序,从而改进了所有美元+1美元单位的美元单位(0.3xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员