Control Barrier Functions (CBFs) have been demonstrated to be a powerful tool for safety-critical controller design for nonlinear systems. Existing design paradigms do not address the gap between theory (controller design with continuous time models) and practice (the discrete time sampled implementation of the resulting controllers); this can lead to poor performance and violations of safety for hardware instantiations. We propose an approach to close this gap by synthesizing sampled-data counterparts to these CBF-based controllers using approximate discrete time models and Sampled-Data Control Barrier Functions (SD-CBFs). Using properties of a system's continuous time model, we establish a relationship between SD-CBFs and a notion of practical safety for sampled-data systems. Furthermore, we construct convex optimization-based controllers that formally endow nonlinear systems with safety guarantees in practice. We demonstrate the efficacy of these controllers in simulation.
翻译:控制屏障功能(CBFs)已被证明是非线性系统安全关键控制器设计的一个有力工具; 现有的设计范式没有解决理论(带连续时间模型的控制器设计)与实践(结果控制器的离散时间抽样实施)之间的差距; 这可能导致硬件即时安全性能不佳和侵犯; 我们提出一种办法来缩小这一差距,办法是利用近似离散时间模型和抽样数据控制屏障功能(SD-CBFs),将抽样数据控制器与基于CBF的控制器的对应方综合起来。 我们利用系统连续时间模型的特性,在SD-CBFs与抽样数据系统实际安全性概念之间建立关系。 此外,我们建造了基于配置的配置优化控制器,这些控制器在实际中具有安全保障,正式关闭非线性系统。 我们在模拟中展示了这些控制器的功效。