Sensor fusion is an essential topic in many perception systems, such as autonomous driving and robotics. Transformers-based detection head and CNN-based feature encoder to extract features from raw sensor-data has emerged as one of the best performing sensor-fusion 3D-detection-framework, according to the dataset leaderboards. In this work we provide an in-depth literature survey of transformer based 3D-object detection task in the recent past, primarily focusing on the sensor fusion. We also briefly go through the Vision transformers (ViT) basics, so that readers can easily follow through the paper. Moreover, we also briefly go through few of the non-transformer based less-dominant methods for sensor fusion for autonomous driving. In conclusion we summarize with sensor-fusion trends to follow and provoke future research. More updated summary can be found at: https://github.com/ApoorvRoboticist/Transformers-Sensor-Fusion


翻译:感应器聚合是许多感知系统(如自主驱动和机器人等)的一个基本主题。根据数据集头板,根据数据集显示,从原始传感器数据中提取特征的转换器检测头和CNN基于特征编码器,根据原始传感器数据,已成为最有效果的传感器聚变3D检测框架之一。在这项工作中,我们对最近基于3D粒子的变压器检测任务进行了深入的文献调查,主要侧重于传感器聚变。我们还简要地浏览了视觉变压器基础,以便读者能够很容易地了解文件内容。此外,我们还简要地研究了少数基于非转化器的不甚突出的自动驱动传感器聚变方法。最后,我们总结了将遵循的传感器聚变趋势,并激发了未来的研究。更多的最新摘要见:https://github.com/ApoorvRobtorist/Transfordes-Sensor-Fusion。

1
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2023年1月5日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
12+阅读 · 2021年6月21日
Deep Learning for Generic Object Detection: A Survey
Arxiv
14+阅读 · 2018年9月6日
VIP会员
相关VIP内容
相关论文
Arxiv
27+阅读 · 2023年1月5日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
12+阅读 · 2021年6月21日
Deep Learning for Generic Object Detection: A Survey
Arxiv
14+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员