In this paper, we consider the problem of estimating parameters in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.
翻译:暂无翻译