The triple-based knowledge in large-scale knowledge bases is most likely lacking in structural logic and problematic of conducting knowledge hierarchy. In this paper, we introduce the concept of metaknowledge to knowledge engineering research for the purpose of structural knowledge construction. Therefore, the Metaknowledge Extraction Framework and Document Structure Tree model are presented to extract and organize metaknowledge elements (titles, authors, abstracts, sections, paragraphs, etc.), so that it is feasible to extract the structural knowledge from multi-modal documents. Experiment results have proved the effectiveness of metaknowledge elements extraction by our framework. Meanwhile, detailed examples are given to demonstrate what exactly metaknowledge is and how to generate it. At the end of this paper, we propose and analyze the task flow of metaknowledge applications and the associations between knowledge and metaknowledge.
翻译:大规模知识库中的三重知识很可能缺乏结构性逻辑,在进行知识等级方面存在问题。本文介绍知识工程研究的元知识概念,以进行结构性知识建设。因此,提出了“代用知识提取框架”和“文件结构树”模型,以提取和组织元知识元素(标题、作者、摘要、章节、段落等),从而从多模式文件中提取结构性知识是可行的。实验结果证明了我们框架提取的元知识元素的有效性。同时,我们提供了详细的例子,以证明什么是“代用知识”以及如何产生这种知识。在本文结尾,我们提出和分析“代用知识应用的任务流动”以及知识和元知识之间的关联。