Data-driven, knowledge-grounded neural conversation models are capable of generating more informative responses. However, these models have not yet demonstrated that they can zero-shot adapt to updated, unseen knowledge graphs. This paper proposes a new task about how to apply dynamic knowledge graphs in neural conversation model and presents a novel TV series conversation corpus (DyKgChat) for the task. Our new task and corpus aids in understanding the influence of dynamic knowledge graphs on responses generation. Also, we propose a preliminary model that selects an output from two networks at each time step: a sequence-to-sequence model (Seq2Seq) and a multi-hop reasoning model, in order to support dynamic knowledge graphs. To benchmark this new task and evaluate the capability of adaptation, we introduce several evaluation metrics and the experiments show that our proposed approach outperforms previous knowledge-grounded conversation models. The proposed corpus and model can motivate the future research directions.
翻译:由数据驱动的、基于知识的神经对话模型能够产生更多信息化的响应。然而,这些模型尚未显示它们能够零光地适应最新的、看不见的知识图形。本文件提出了如何在神经对话模型中应用动态知识图形的新任务,并为任务提供了一部新型的电视系列对话成套材料(DyKChat)。我们的新任务和应用程序辅助工具可以理解动态知识图对反应生成的影响。此外,我们还提出了一个初步模型,从两个网络中每步从两个网络中选择一个产出:一个序列到序列模型(Seq2Seq)和一个多动点推理模型,以支持动态知识图形。为了确定这一新任务的基准和评估适应能力,我们引入了几项评估指标和实验,表明我们拟议的方法超越了先前的知识基础对话模型。拟议的方案和模型可以激励未来的研究方向。