Data-driven, knowledge-grounded neural conversation models are capable of generating more informative responses. However, these models have not yet demonstrated that they can zero-shot adapt to updated, unseen knowledge graphs. This paper proposes a new task about how to apply dynamic knowledge graphs in neural conversation model and presents a novel TV series conversation corpus (DyKgChat) for the task. Our new task and corpus aids in understanding the influence of dynamic knowledge graphs on responses generation. Also, we propose a preliminary model that selects an output from two networks at each time step: a sequence-to-sequence model (Seq2Seq) and a multi-hop reasoning model, in order to support dynamic knowledge graphs. To benchmark this new task and evaluate the capability of adaptation, we introduce several evaluation metrics and the experiments show that our proposed approach outperforms previous knowledge-grounded conversation models. The proposed corpus and model can motivate the future research directions.


翻译:由数据驱动的、基于知识的神经对话模型能够产生更多信息化的响应。然而,这些模型尚未显示它们能够零光地适应最新的、看不见的知识图形。本文件提出了如何在神经对话模型中应用动态知识图形的新任务,并为任务提供了一部新型的电视系列对话成套材料(DyKChat)。我们的新任务和应用程序辅助工具可以理解动态知识图对反应生成的影响。此外,我们还提出了一个初步模型,从两个网络中每步从两个网络中选择一个产出:一个序列到序列模型(Seq2Seq)和一个多动点推理模型,以支持动态知识图形。为了确定这一新任务的基准和评估适应能力,我们引入了几项评估指标和实验,表明我们拟议的方法超越了先前的知识基础对话模型。拟议的方案和模型可以激励未来的研究方向。

3
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员