We investigate the computational performance of Artificial Neural Networks (ANNs) in semi-nonparametric instrumental variables (NPIV) models of high dimensional covariates that are relevant to empirical work in economics. We focus on efficient estimation of and inference on expectation functionals (such as weighted average derivatives) and use optimal criterion-based procedures (sieve minimum distance or SMD) and novel efficient score-based procedures (ES). Both these procedures use ANN to approximate the unknown function. Then, we provide a detailed practitioner's recipe for implementing these two classes of estimators. This involves the choice of tuning parameters both for the unknown functions (that include conditional expectations) but also for the choice of estimation of the optimal weights in SMD and the Riesz representers used with the ES estimators. Finally, we conduct a large set of Monte Carlo experiments that compares the finite-sample performance in complicated designs that involve a large set of regressors (up to 13 continuous), and various underlying nonlinearities and covariate correlations. Some of the takeaways from our results include: 1) tuning and optimization are delicate especially as the problem is nonconvex; 2) various architectures of the ANNs do not seem to matter for the designs we consider and given proper tuning, ANN methods perform well; 3) stable inferences are more difficult to achieve with ANN estimators; 4) optimal SMD based estimators perform adequately; 5) there seems to be a gap between implementation and approximation theory. Finally, we apply ANN NPIV to estimate average price elasticity and average derivatives in two demand examples.
翻译:我们调查半非参数工具变量(NPIV)模型中的人工神经网络(ANNs)的计算性能,这些模型涉及与经济学经验工作相关的高维共变体(NPIV)模型,我们侧重于对预期功能(例如加权平均衍生物)进行高效估计和推断,并使用最佳标准程序(隐蔽最低距离或SMD)和新的高效计分程序(ES),这两种程序都使用ANN(ANN)来估计未知的功能。然后,我们为实施这两类估算器提供了详细的操作师配方。这涉及为未知功能(包括有条件的预期)选择调试参数,以及选择对期待功能(例如加权平均衍生物)进行最佳估计(例如加权平均衍生物)并使用最佳标准(例如加权平均衍生物)和新型计分法代表器进行最佳估计。最后,我们进行了大量的蒙特卡洛实验,比较复杂设计中的定值表现,其中涉及大量递增量(持续到13个),以及各种潜在的非线性和内差相关关系。这涉及到我们结果中的一些取的参数(包括有条件的)以及我们结果中的最佳估计值(包括:SMDRFervial)的估值估算值估算值估算值估算值估算值估算,而不是最后的计算方法。