Unbiased and consistent variance estimators generally do not exist for design-based treatment effect estimators because experimenters never observe more than one potential outcome for any unit. The problem is exacerbated by interference and complex experimental designs. In this paper, we consider variance estimation for linear treatment effect estimators under interference and arbitrary experimental designs. Experimenters must accept conservative estimators in this setting, but they can strive to minimize the conservativeness. We show that this task can be interpreted as an optimization problem in which one aims to find the lowest estimable upper bound of the true variance given one's risk preference and knowledge of the potential outcomes. We characterize the set of admissible bounds in the class of quadratic forms, and we demonstrate that the optimization problem is a convex program for many natural objectives. This allows experimenters to construct less conservative variance estimators, making inferences about treatment effects more informative. The resulting estimators are guaranteed to be conservative regardless of whether the background knowledge used to construct the bound is correct, but the estimators are less conservative if the knowledge is reasonably accurate.
翻译:对于基于设计的治疗效果估计值,一般不存在非偏差和一贯差异估计值,因为实验者从不观测任何单位的不止一个潜在结果。问题因干扰和复杂的实验设计而加剧。在本文件中,我们考虑了线性治疗效果估计值的差异估计值,在干扰和任意的实验设计下,我们考虑了线性治疗效果估计值的差异估计值。实验者必须接受这种环境中保守的估算值,但他们可以努力尽量减少保守性。我们表明,这一任务可以被解释为一个优化问题,在这种优化中,人们要找到真实差异的最低可估计上限,因为考虑到风险偏好和对潜在结果的了解。我们在四面形形态类别中描述一套可接受的界限,我们证明优化问题是一个许多自然目标的组合程序。这使得实验者能够建立保守的差异估计器,从而对治疗效果的推断值作出更多的信息。因此,估计者可以保证保守,不管用来构建约束的背景知识是否正确,但是如果知识合理准确,测量者则保守性较低。