The prediction of surrounding agents' motion is a key for safe autonomous driving. In this paper, we explore navigation maps as an alternative to the predominant High Definition (HD) maps for learning-based motion prediction. Navigation maps provide topological and geometrical information on road-level, HD maps additionally have centimeter-accurate lane-level information. As a result, HD maps are costly and time-consuming to obtain, while navigation maps with near-global coverage are freely available. We describe an approach to integrate navigation maps into learning-based motion prediction models. To exploit locally available HD maps during training, we additionally propose a model-agnostic method for knowledge distillation. In experiments on the publicly available Argoverse dataset with navigation maps obtained from OpenStreetMap, our approach shows a significant improvement over not using a map at all. Combined with our method for knowledge distillation, we achieve results that are close to the original HD map-reliant models. Our publicly available navigation map API for Argoverse enables researchers to develop and evaluate their own approaches using navigation maps.
翻译:周围物剂运动的预测是安全自主驾驶的关键。 在本文中,我们探索导航图,作为学习运动预测的主要高定义(HD)地图的替代物。导航图提供了道路水平的地形和几何信息,HD地图还具备了中米准确的车道信息。因此,HD地图是昂贵和费时的,而具有近全球覆盖范围的导航图是免费的。我们描述了将导航图纳入学习运动预测模型的方法。为了在培训期间利用当地现有的HD地图,我们还提议了一种知识蒸馏模型-遗传方法。在公开提供的Argovers数据集上进行的实验中,从OpenStreetMap获得的导航图显示,我们的方法与根本不使用地图相比有很大的改进。与我们的知识蒸馏方法相结合,我们取得的结果接近最初的HD地图依赖模型。我们为Argovers提供的公开使用的导航图 API使研究人员能够利用导航图开发和评估自己的方法。