We solve robot trajectory planning problems at industry-relevant scales. Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques, as well as path relinking for solution refinement. The core optimization module consists of a biased random-key genetic algorithm. Through a distinct separation of problem-independent and problem-dependent modules, we achieve an efficient problem representation, with a native encoding of constraints. We show that generalizations to alternative algorithmic paradigms such as simulated annealing are straightforward. We provide numerical benchmark results for industry-scale data sets. Our approach is found to consistently outperform greedy baseline results. To assess the capabilities of today's quantum hardware, we complement the classical approach with results obtained on quantum annealing hardware, using qbsolv on Amazon Braket. Finally, we show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
翻译:我们在与工业有关的尺度上解决机器人轨迹规划问题。 我们的端到端解决方案将高度多功能的随机关键算法与模型堆叠和组合技术相结合,并且将路径重新链接以完善解决方案。 核心优化模块由偏向随机关键遗传算法组成。 通过将问题独立和问题独立模块分开,我们实现了高效的问题代表制,并本地对制约因素进行编码。 我们显示,对模拟肛门等替代算法模式的概括化是直截了当的。 我们为工业规模数据集提供了数字基准结果。 我们发现,我们的方法始终超越了贪婪基线结果。 为了评估今天的量子硬件的能力,我们用亚马孙布拉克特的量子反射硬件获得的结果来补充经典方法。 最后,我们展示了后者如何融入我们更大的管道,为这一问题提供量子化混合解决方案。