Stability and safety are critical properties for successful deployment of automatic control systems. As a motivating example, consider autonomous mobile robot navigation in a complex environment. A control design that generalizes to different operational conditions requires a model of the system dynamics, robustness to modeling errors, and satisfaction of safety \NEWZL{constraints}, such as collision avoidance. This paper develops a neural ordinary differential equation network to learn the dynamics of a Hamiltonian system from trajectory data. The learned Hamiltonian model is used to synthesize an energy-shaping passivity-based controller and analyze its \emph{robustness} to uncertainty in the learned model and its \emph{safety} with respect to constraints imposed by the environment. Given a desired reference path for the system, we extend our design using a virtual reference governor to achieve tracking control. The governor state serves as a regulation point that moves along the reference path adaptively, balancing the system energy level, model uncertainty bounds, and distance to safety violation to guarantee robustness and safety. Our Hamiltonian dynamics learning and tracking control techniques are demonstrated on \Revised{simulated hexarotor and quadrotor robots} navigating in cluttered 3D environments.
翻译:稳定性和安全性是成功部署自动控制系统的关键特性。 作为一种激励性的例子, 考虑在复杂环境中自动移动机器人导航。 推广到不同操作条件的控制设计需要系统动态模型、 建模错误的稳健性和安全性满意度, 如避免碰撞。 本文开发了一个神经普通差异方程式网络, 以便从轨迹数据中学习汉密尔顿系统的动态。 学习过的汉密尔顿模型用来合成一个以能量成形的被动控制器, 并分析其/ emph{ robustness} 与所学模型及其/ emph{ 安全} 在环境限制方面的不确定性。 鉴于系统需要的参考路径, 我们使用虚拟参考管理员来扩展我们的设计, 以便实现跟踪控制。 州长州作为一个调控点, 沿着参考路径移动, 平衡系统能源水平、 模型不确定性的界限, 以及到安全侵犯的距离, 以保证稳健和安全性。 我们的汉密尔顿动态学习和跟踪控制技术在 3/ Dimlator 和 routor rostairting 环境中进行校正 3/ Drostairtrosteltravel 。