A data-driven model augmentation framework, referred to as Weakly-coupled Integrated Inference and Machine Learning (IIML), is presented to improve the predictive accuracy of physical models. In contrast to parameter calibration, this work seeks corrections to the structure of the model by a) inferring augmentation fields that are consistent with the underlying model, and b) transforming these fields into corrective model forms. The proposed approach couples the inference and learning steps in a weak sense via an alternating optimization approach. This coupling ensures that the augmentation fields remain learnable and maintain consistent functional relationships with local modeled quantities across the training dataset. An iterative solution procedure is presented in this paper, removing the need to embed the augmentation function during the inference process. This framework is used to infer an augmentation introduced within a Polymer electrolyte membrane fuel cell (PEMFC) model using a small amount of training data (from only 14 training cases.) These training cases belong to a dataset consisting of high-fidelity simulation data obtained from a high-fidelity model of a first generation Toyota Mirai. All cases in this dataset are characterized by different inflow and outflow conditions on the same geometry. When tested on 1224 different configurations, the inferred augmentation significantly improves the predictive accuracy for a wide range of physical conditions. Predictions and available data for the current density distribution are also compared to demonstrate the predictive capability of the model for quantities of interest which were not involved in the inference process. The results demonstrate that the weakly-coupled IIML framework offers sophisticated and robust model augmentation capabilities without requiring extensive changes to the numerical solver.


翻译:数据驱动模型增强框架,称为 " 微弱的混合综合推断和机器学习 " (IIML),用来提高物理模型的预测准确性。与参数校准相反,这项工作寻求对模型结构的校正,方法是:(a) 推断与基本模型一致的增强字段;(b) 将这些字段转换成纠正模型格式。拟议方法通过交替优化方法,将薄弱的推论和学习步骤结合为一种弱义。这一组合确保了增强字段在培训数据集中保持学习的精密和保持与当地模型数量的功能关系。本文介绍了一个迭代解决方案程序,在推断过程中消除了嵌入功能的嵌入功能。这个框架用来推断模型使用少量培训数据(仅来自14个培训案例)。这些培训案例属于由从第一代MIRIi的高纤维模型中获取的高纤维化模拟数据构成的数据集集模拟数据。对于当前精度的稳定性分析结果来说,对于当前精度的精度的精确性分析结果,对于当前精度的精度的精确性分析范围来说,其深度的精确性在12年的精确度中显示数据流流值的精确度中,其精确度的精确度的精确度将显示。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月19日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
35+阅读 · 2021年7月7日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员