We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neural nets, when trained on exponential or cross-entropy loss. We analyse both standard weight normalization (SWN) and exponential weight normalization (EWN), and show that the gradient flow path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate. We extend these results to gradient descent, and establish asymptotic relations between weights and gradients for both SWN and EWN. We also show that EWN causes weights to be updated in a way that prefers asymptotic relative sparsity. For EWN, we provide a finite-time convergence rate of the loss with gradient flow and a tight asymptotic convergence rate with gradient descent. We demonstrate our results for SWN and EWN on synthetic data sets. Experimental results on simple datasets support our claim on sparse EWN solutions, even with SGD. This demonstrates its potential applications in learning neural networks amenable to pruning.


翻译:我们分析在进行指数或交叉湿度损失培训时,对重的梯度下降对平滑均匀神经网进行正常的平滑神经网的感应偏差。我们分析标准重量正常化(SWN)和指数重量正常化(EWN)两者的感应偏差。我们分析标准网络与EWN的梯度流动路径相当于标准网络的梯度流动,具有适应性学习率。我们将这些结果扩大到梯度下降,并为SWN和EWN的重量和梯度建立无症状关系。我们还显示,EWN的重量产生以偏向于无症状相对宽度的方式更新的重量。对于EWN,我们提供了与梯度流动和梯度下降的紧固度混合率的一定时间损失趋同率。我们展示了我们在SWN和EWN的合成数据集上的结果。关于简单数据集的实验结果支持我们对稀疏的EWN解决方案的主张,即使SGD,也证明了其在学习适合运行的神经网络中的潜在应用。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员