When dealing with deep neural network (DNN) applications on edge devices, continuously updating the model is important. Although updating a model with real incoming data is ideal, using all of them is not always feasible due to limits, such as labeling and communication costs. Thus, it is necessary to filter and select the data to use for training (i.e., active learning) on the device. In this paper, we formalize a practical active learning problem for DNNs on edge devices and propose a general task-agnostic framework to tackle this problem, which reduces it to a stream submodular maximization. This framework is light enough to be run with low computational resources, yet provides solutions whose quality is theoretically guaranteed thanks to the submodular property. Through this framework, we can configure data selection criteria flexibly, including using methods proposed in previous active learning studies. We evaluate our approach on both classification and object detection tasks in a practical setting to simulate a real-life scenario. The results of our study show that the proposed framework outperforms all other methods in both tasks, while running at a practical speed on real devices.
翻译:处理边缘设备上的深度神经网络(DNN)应用程序时,持续更新模型非常重要。尽管通过实时数据更新模型是理想的,但由于标注和通信成本等限制,使用所有数据并不总是可行的。因此,有必要在设备上选择用于训练的数据(即主动学习)。在本文中,我们对边缘设备上DNN的实际主动学习问题进行了形式化,并提出了一个通用的任务无关框架来解决这个问题,这将其缩小为一种流子模块最大化问题。该框架足够轻便,可在低计算资源下运行,但由于子模块性质,其提供的解决方案在理论上保证质量。通过该框架,我们可以灵活地配置数据选取标准,包括使用以前主动学习研究中提出的方法。我们在实际环境中进行分类和物体检测任务的评估,以模拟真实场景。我们研究的结果表明,所提出的框架在两个任务中均优于其他所有方法,在实际设备上以实际速度运行。