We analyze stochastic gradient descent (SGD) type algorithms on a high-dimensional sphere which is parameterized by a neural network up to a normalization constant. We provide a new algorithm for the setting of supervised learning and show its convergence both theoretically and numerically. We also provide the first proof of convergence for the unsupervised setting, which corresponds to the widely used variational Monte Carlo (VMC) method in quantum physics.
翻译:参数化球形随机梯度下降的收敛性及其在变分蒙特卡罗模拟中的应用
我们分析了在一个高维球形上使用SGD类型的算法,该球形由神经网络参数化,并通过计算规范化常数来表示。我们提供了一种新的算法,用于解决监督学习问题,并证明了其收敛性。对于无监督学习问题,我们提供了第一个收敛证明,该问题对应于量子物理中广泛使用的变分蒙特卡洛(VMC)方法。