Latent confounding has been a long-standing obstacle for causal reasoning from observational data. One popular approach is to model the data using acyclic directed mixed graphs (ADMGs), which describe ancestral relations between variables using directed and bidirected edges. However, existing methods using ADMGs are based on either linear functional assumptions or a discrete search that is complicated to use and lacks computational tractability for large datasets. In this work, we further extend the existing body of work and develop a novel gradient-based approach to learning an ADMG with non-linear functional relations from observational data. We first show that the presence of latent confounding is identifiable under the assumptions of bow-free ADMGs with non-linear additive noise models. With this insight, we propose a novel neural causal model based on autoregressive flows for ADMG learning. This not only enables us to determine complex causal structural relationships behind the data in the presence of latent confounding, but also estimate their functional relationships (hence treatment effects) simultaneously. We further validate our approach via experiments on both synthetic and real-world datasets, and demonstrate the competitive performance against relevant baselines.


翻译:Translated abstract: 潜在混淆一直是从观察数据进行因果推理的长期障碍。一种流行的方法是使用无环有向混合图(ADMG),它使用定向和双向边描述变量之间的祖先关系。然而,现有的ADMG方法基于线性函数假设或者是复杂的离散搜索,对于大型数据集缺乏计算可处理性。在本研究中,我们进一步扩展现有的工作,从观察数据中开发一种基于非线性函数关系的ADMGS学习的新型基于梯度的方法。我们首先表明,在ADMGS的无弓形假定和非线性附加噪声模型的情况下,存在潜在混淆是可辨识的。基于此,我们提出了一种新的基于自回归流程的神经因果模型,用于ADMGS学习。这不仅可以使我们在存在潜在混淆的数据背后确定复杂的因果结构关系,同时还可以同时估计它们的函数关系(因此是治疗效果)。我们通过对合成数据和真实世界数据集的实验进一步验证了我们的方法,并展示了与相关基线的竞争性能。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员