A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts~(upwind gSBP) schemes in space and implicit-explicit Runge-Kutta~(IMEX-RK) schemes in time. Hereby, advection terms are discretized explicitly while diffusion terms are solved implicitly. In this context, specific combinations of space and time discretizations enjoy enhanced stability properties. In fact, if the first and second-derivative upwind gSBP operators fulfill a compatibility condition, the allowable time step size is independent of grid refinement, although the advective terms are discretized explicitly. In one space dimension it is shown that upwind gSBP schemes represent a general framework including standard discontinuous Galerkin~(DG) schemes on a global level. While previous work for DG schemes has demonstrated that the combination of upwind advection fluxes and the central-type first Bassi-Rebay~(BR1) scheme for diffusion does not allow for grid-independent stable time steps, the current work shows that central advection fluxes are compatible with BR1 regarding enhanced stability of IMEX time stepping. Furthermore, unlike previous discrete energy stability investigations for DG schemes, the present analysis is based on the discrete energy provided by the corresponding SBP norm matrix and yields time step restrictions independent of the discretization order in space since no finite-element-type inverse constants are involved. Numerical experiments are provided confirming these theoretical findings.
翻译:关于IMEX Upwind gSBP格式求解线性对流-扩散方程的稳定性
翻译后的摘要:
对于空间采用广义上风SBP格式、时间采用IMPICIT-EXPLICIT Runge-Kutta格式(即IMEX-RK格式)离散的线性对流-扩散问题的完全离散能量稳定性进行了分析。在此情形下,通过显式离散对流项和隐式离散扩散项。在特定的空间和时间离散方式组合下,离散格式可以拥有较强的稳定性质。实际上,如果广义上风SBP格式的一阶和二阶导数算子满足兼容条件,则允许时间步长独立于网格细化,即使对流项采用显式离散。在一维空间情况下,证明了广义上风SBP格式表示了一个包含标准间断Galerkin格式的整体框架。虽然之前针对间断Galerkin格式的研究表明,采用上风对流通量和暴力-雷贝第一格式(BR1)求解扩散导致的IMEX时间离散方案无法实现独立于网格细化的稳定时间步长,但当前工作表明,针对IMEX时间离散的稳定性,中心对流通量与BR1格式是兼容的。此外,与之前针对DG格式的研究不同,本工作是基于相应的SBP范数矩阵提供的离散能量进行分析,并且得到了独立于空间离散阶次的时间步长约束,因为不涉及有限元类型的逆常数。最后,提供了数值试验结果以证明所述理论结果。