We propose a novel diffusion map particle system (DMPS) for generative modeling, based on diffusion maps and Laplacian-adjusted Wasserstein gradient descent (LAWGD). Diffusion maps are used to approximate the generator of the Langevin diffusion process from samples, and hence to learn the underlying data-generating manifold. On the other hand, LAWGD enables efficient sampling from the target distribution given a suitable choice of kernel, which we construct here via a spectral approximation of the generator, computed with diffusion maps. Numerical experiments show that our method outperforms others on synthetic datasets, including examples with manifold structure.
翻译:Abstract: 我们提出了一种新颖的扩散映射粒子系统(DMPS)用于生成建模,基于扩散映射和Laplacian调整的Wasserstein梯度下降(LAWGD)。扩散映射用于从样本中逼近Langevin扩散过程的发生器,因此可以学习基础的数据生成子流形。另一方面,LAWGD利用合理的核的选择,通过扩散映射计算出的发生器的谱近似,实现从目标分布的高效采样。数值实验表明,我们的方法在包括流形结构的合成数据集上表现出色。