Reinforcement learning (RL) has proven effective in incentivizing the reasoning abilities of large language models (LLMs), but suffers from severe efficiency challenges due to its trial-and-error nature. While the common practice employs supervised fine-tuning (SFT) as a warm-up stage for RL, this decoupled two-stage approach suffers from catastrophic forgetting: second-stage RL gradually loses SFT-acquired behaviors and inefficiently explores new patterns. This study introduces a novel method for learning reasoning models that employs bilevel optimization to facilitate better cooperation between these training paradigms. By conditioning the SFT objective on the optimal RL policy, our approach enables SFT to meta-learn how to guide RL's optimization process. During training, the lower level performs RL updates while simultaneously receiving SFT supervision, and the upper level explicitly maximizes the cooperative gain-the performance advantage of joint SFT-RL training over RL alone. Empirical evaluations on five reasoning benchmarks demonstrate that our method consistently outperforms baselines and achieves a better balance between effectiveness and efficiency.
翻译:暂无翻译