The recent surge of complex attention-based deep learning architectures has led to extraordinary results in various downstream NLP tasks in the English language. However, such research for resource-constrained and morphologically rich Indian vernacular languages has been relatively limited. This paper proffers team SPPU\_AKAH's solution for the TechDOfication 2020 subtask-1f: which focuses on the coarse-grained technical domain identification of short text documents in Marathi, a Devanagari script-based Indian language. Availing the large dataset at hand, a hybrid CNN-BiLSTM attention ensemble model is proposed that competently combines the intermediate sentence representations generated by the convolutional neural network and the bidirectional long short-term memory, leading to efficient text classification. Experimental results show that the proposed model outperforms various baseline machine learning and deep learning models in the given task, giving the best validation accuracy of 89.57\% and f1-score of 0.8875. Furthermore, the solution resulted in the best system submission for this subtask, giving a test accuracy of 64.26\% and f1-score of 0.6157, transcending the performances of other teams as well as the baseline system given by the organizers of the shared task.
翻译:最近,基于关注的复杂深层次学习结构的激增,导致在下游各种英语NLP任务中取得了不同寻常的成果,然而,对资源紧缺和形态丰富的印度本地语言的这种研究相对有限。这个纸质建议团队SPPU ⁇ AKAH的2020年技术发展解决方案SPPU ⁇ AKAH用于高效文本分类。实验结果表明,拟议的模型在特定任务中超越了各种基线机器学习和深学习模型,使89.57 ⁇ 和F1-核心的印度语言(0.8875)得到最佳的验证准确性。此外,这一解决方案导致为这一子任务提交最佳系统,使共振神经网络和双向长期记忆生成的中间语句表达方式能够胜任地结合起来,从而实现高效的文本分类。实验结果表明,拟议的模型在特定任务中超越了各种基线机器学习和深层次学习模式,使89.57 ⁇ 和F1-核心的印度语言(0.8875)得到最佳的确认性精确性。此外,还提出了CNN-BILSTM的混合关注聚合模式,使该子系统能够将合并成一个测试0.615*和F核心任务团队的测试,成为了0.61的测试,成为0.618的系统,成为了其他任务执行团队的常规的测试。