文本分类(Text Classification)任务是根据给定文档的内容或主题,自动分配预先定义的类别标签。

VIP内容

文本分类作为自然语言处理中一个基本任务,在20世纪50年代就已经对其算法进行了研究,现在单标签文本分类算法已经趋向成熟,但是对于多标签文本分类的研究还有很大的提升空间。介绍了多标签文本分类的基本概念以及基本流程,包括数据集获取、文本预处理、模型训练和预测结果。介绍了多标签文本分类的方法。这些方法主要分为两大类:传统机器学习方法和基于深度学习的方法。传统机器学习方法主要包括问题转换方法和算法自适应方法。基于深度学习的方法是利用各种神经网络模型来处理多标签文本分类问题,根据模型结构,将其分为基于CNN结构、基于RNN结构和基于Transfomer结构的多标签文本分类方法。对多标签文本分类常用的数据集进行了梳理总结。对未来的发展趋势进行了分析与展望。

http://cea.ceaj.org/CN/abstract/abstract39605.shtml

成为VIP会员查看完整内容
0
21

最新论文

Despite impressive performance on many text classification tasks, deep neural networks tend to learn frequent superficial patterns that are specific to the training data and do not always generalize well. In this work, we observe this limitation with respect to the task of native language identification. We find that standard text classifiers which perform well on the test set end up learning topical features which are confounds of the prediction task (e.g., if the input text mentions Sweden, the classifier predicts that the author's native language is Swedish). We propose a method that represents the latent topical confounds and a model which "unlearns" confounding features by predicting both the label of the input text and the confound; but we train the two predictors adversarially in an alternating fashion to learn a text representation that predicts the correct label but is less prone to using information about the confound. We show that this model generalizes better and learns features that are indicative of the writing style rather than the content.

0
0
下载
预览
Top