Convolutional neural networks (CNNs) have recently emerged as a popular building block for natural language processing (NLP). Despite their success, most existing CNN models employed in NLP share the same learned (and static) set of filters for all input sentences. In this paper, we consider an approach of using a small meta network to learn context-sensitive convolutional filters for text processing. The role of meta network is to abstract the contextual information of a sentence or document into a set of input-aware filters. We further generalize this framework to model sentence pairs, where a bidirectional filter generation mechanism is introduced to encapsulate co-dependent sentence representations. In our benchmarks on four different tasks, including ontology classification, sentiment analysis, answer sentence selection, and paraphrase identification, our proposed model, a modified CNN with context-sensitive filters, consistently outperforms the standard CNN and attention-based CNN baselines. By visualizing the learned context-sensitive filters, we further validate and rationalize the effectiveness of proposed framework.
翻译:进化神经网络(CNN)最近成为自然语言处理的受欢迎的基石(NLP)。尽管取得了成功,但是在NLP使用的大多数CNN模式中,大多数现有的CNN模式对所有输入句子都使用相同的已学(和静态)过滤器。在本文件中,我们考虑使用一个小型元网络来学习对背景敏感的进化过滤器,用于文本处理。元网络的作用是将一个句子或文件的背景资料抽成一套输入觉过滤器。我们进一步将这一框架推广到对句模式,采用双向过滤器生成机制来包罗共同依赖的句子。在我们关于四项不同任务的基准中,包括文理学分类、情绪分析、答案选择和句子识别,我们提议的模式是经过修改的有背景敏感的过滤器的CNN,它一贯地超越CNN标准和关注的CNN基线。通过直观了解了背景的过滤器,我们进一步验证了拟议框架的有效性并使之合理化。