Entity and relation extraction is the necessary step in structuring medical text. However, the feature extraction ability of the bidirectional long short term memory network in the existing model does not achieve the best effect. At the same time, the language model has achieved excellent results in more and more natural language processing tasks. In this paper, we present a focused attention model for the joint entity and relation extraction task. Our model integrates well-known BERT language model into joint learning through dynamic range attention mechanism, thus improving the feature representation ability of shared parameter layer. Experimental results on coronary angiography texts collected from Shuguang Hospital show that the F1-score of named entity recognition and relation classification tasks reach 96.89% and 88.51%, which are better than state-of-the-art methods 1.65% and 1.22%, respectively.
翻译:实体和关系提取是构建医学文本的必要步骤。 但是, 现有模型中双向长期短期记忆网络的特征提取能力没有取得最佳效果。 同时, 语言模型在越来越多的自然语言处理任务中取得了极佳的成果。 在本文中, 我们为联合实体和关联提取任务提出了一个重点关注模式。 我们的模型将众所周知的BERT语言模型纳入到通过动态范围关注机制进行联合学习的过程中, 从而改进共享参数层的特征代表能力。 从Shugwang医院收集的冠状动画文本的实验结果显示, 命名实体识别和关系分类任务的F1核心分别达到96.89%和88.51%, 比最新方法1.65%和1.22%要好。