Safe deployment of autonomous robots in diverse scenarios requires agents that are capable of efficiently adapting to new environments while satisfying constraints. In this work, we propose a practical and theoretically-justified approach to maintaining safety in the presence of dynamics uncertainty. Our approach leverages Bayesian meta-learning with last-layer adaptation: the expressiveness of neural-network features trained offline, paired with efficient last-layer online adaptation, enables the derivation of tight confidence sets which contract around the true dynamics as the model adapts online. We exploit these confidence sets to plan trajectories that guarantee the safety of the system. Our approach handles problems with high dynamics uncertainty where reaching the goal safely is initially infeasible by first exploring to gather data and reduce uncertainty, before autonomously exploiting the acquired information to safely perform the task. Under reasonable assumptions, we prove that our framework has high-probability guarantees of satisfying all constraints at all times jointly. This analysis also motivates two regularizers of last-layer meta-learners that improve online adaptation capabilities as well as performance by reducing the size of the confidence sets. We extensively demonstrate our approach in simulation and on hardware.


翻译:在不同情景下安全部署自主机器人需要能够有效适应新环境同时又能满足限制条件的代理人。 在这项工作中,我们提出了在动态不确定的情况下维持安全的实用和理论上合理的方法。我们的方法利用了巴伊西亚元学习,最后一级进行了调整:经过培训的离线神经网络功能的清晰度,加上有效的最后一级在线适应,从而能够产生紧凑的自信,这些信任套套套随着模型的在线调整而与真实动态相连接。我们利用这些信任套套来规划保证系统安全的轨迹。我们的方法处理高度动态不确定性的问题,首先通过先探索收集数据和减少不确定性,然后自主地利用获得的信息安全地执行任务。根据合理的假设,我们证明我们的框架具有高概率保证,可以随时联合满足所有限制。我们的分析还激励了两个提高在线适应能力的正规化的中层元激光器,通过缩小信任套件的大小来提高在线适应能力。我们在模拟和硬件上广泛展示了我们的方法。

0
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
Top
微信扫码咨询专知VIP会员